จากสูตร z1-z22 = z12-z1z2¯-z1¯z2+z22 → ⊛โจทย์ให้ z1 = 2 , z2 = 3และ z1 = 2cosπ8+isinπ8 z2 = 3cos3π8+isin3π8 จะได้ว่าz1z2¯ = 2cosπ8+isinπ83cos3π8+isin3π8 จากสูตร zAzB = γAγBcosθA+θB+isinθA+θB ∴ z1z2¯ = 2cosπ8+isinπ83cos3π8-isin3π8 ; sin-θ = -sinθ = 2cosπ8+isinπ83cos-3π8+isin-3π8 ; cos-θ = cosθ = 32 cosπ8+-3π8+isinπ8+-3π8 =32 cos-π4+isin-π4 = 32 cosπ4-isinπ4 = 32 12-i12 = 3-3i ∴ z¯1z2 = [2cosπ8-isinπ8][3cos3π8+isin3π8] = [2cos-π8+isin-π8][3cos3π8+isin3π8] = 32cos-π8+3π8+isin-π8+3π8 = 32cosπ4+isinπ4 = 3212+i12 = 3+3i จาก ⊛ จะได้ว่า z1-z22 = 22-3-3i-3+3i+32 = 2-3+3i-3-3i+9 = 5∴ z1-z2 = 5