ข้อสอบ PAT 1 - ตุลาคม 2555

ข้อ 41

กำหนดให้ A=1,2,3,  , k  เมื่อ k เป็นจำนวนเต็มบวก และ ให้ B=a,b A×A  0 <b-a7

ค่าของ k เท่ากับเท่าใดที่ทำให้จำนวนสมาชิกของเซต B เท่ากับ 714

รีวิว - เสียงตอบรับจากผู้เรียน

เฉลยข้อสอบ

จากโจทย์ B=a,b A×A  0<b-a7แสดงว่า     0<b-a    และ    b-a7                  b>a           และ    b-a7

แทนค่า      b=1          หา a ไม่ได้                   b=2           a=1                             จะได้ 1 แบบ                  b=3           a=1,2                         จะได้ 2 แบบ                  b=4           a=1,2,3                      จะได้ 3 แบบ                  b=5           a=1,2,3,4                   จะได้ 4 แบบ                  b=6           a=1,2,3,4,5               จะได้ 5 แบบ                  b=7           a=1,2,3,4,5,6            จะได้ 6 แบบ                 b=8           a=1,2,3,4,5,6,7                 b=9           a=2,3,4,5,6,7,8                 b=10         a=3,4,5,6,7,8,9                  b=k           a=...  แถวละ 7 แบบ

แสดงว่า    nB=1+2+3+4+5+6+7k-7                 nB=21+7k-7จากโจทย์ จำนวนสมาชิกของเซต B เท่ากับ 714จะได้              nB=714         21+7k-7=714                  7k-7=693                       k-7=99ดังนั้น                   k=106

ปิด
ทดลองเรียน