จากโจทย์ค่าของ limn→∞a2a3a4...ana2-1a3-1a4-1...an-1 โดย a2a3a4...ana2-1a3-1a4-1...an-1=a2a2-1a3a3-1a4a4-1...anan-1 พิจารณา anan-1จะได้ anan-1=n2n+1n2n+1-1 =nn+1nn+1-2 =nn+1n2+n-2 =nn+1n+2n-1 แสดงว่า a2a3a4...ana2-1a3-1a4-1...an-1 =a2a2-1a3a3-1a4a4-1...anan-1 =2341·3452·4563...nn+1n+2n-1 =3·nn+2 ดังนั้น limn→∞a2a3a4...ana2-1a3-1a4-1...an-1 =limn→∞3·nn+2 =limn→∞n3n1+2n =limn→∞(3)(1+2n) ; แทน n=∞ =31+0 =3