จากโจทย์ an=∫nnn+221x2dxจะได้ an=x-1-1nnn+22 =-x-1nnn+22 =-nn+22-1-n-1 =-2nn+2-1n =-2-n-2nn+2 =nnn+2 =1n+2 ดังนั้น ∑n=1∞ann=∑n=1∞1nn+2=12∑n=1∞1n-1n+2=12(11-13)+(12-14)+(13-15)+(14-16)+...=1211+12=1232=34